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Using ants and other social insects as models,

computer scientists have created software agents

that cooperate to solve complex problems, such as

the rerouting of traffic in a busy telecom network

nsects that live in colonies—ants,

bees, wasps, termites—have long

fascinated everyone from naturalists

to artists. Maurice Maeterlinck, the

Belgian poet, once wrote, “What is it that governs here? What is it that

issues orders, foresees the future, elaborates plans and preserves equi-

librium?” These, indeed, are puzzling questions.

Each insect in a colony seems to have its own agenda, and yet the group

as a whole appears to be highly organized. Apparently the seamless inte-

gration of all individual activities does not require any supervision. In

fact, scientists who study the behavior of social insects have found that 



cooperation at the colony level is largelyself-organized: in nu-
merous situations the coordination arises from interactions
among individuals. Although these interactions might be
simple (one ant merely following the trail left by another), to-
gether they can solve difficult problems(find ing the shortest
route among countless possible paths to a food source). This
collective behavior that emerges from a group of social in-
sects has been dubbed “swarm intelligence.”

Recently a growing community of researchers has been de-
vising new ways of applying swarm intelligence to diverse
tasks. The foraging of ants has led to a novel method for
rerouting network traffic in busy telecommunications sys-
tems. The cooperative interaction of ants working to trans-
port a large food item may lead to more effective algorithms
for robots. The way in which insects cluster their colony’s
dead and sort their larvae can aid in analyzing banking data.
And the division of labor among honeybees could help
streamline the assembly lines in factories.

Virtual Foraging

One of the early studies of swarm intelligence investigated
the foraging behavior of ants. Jean-Louis Deneubourg of

the Free University of Brussels and his colleagues showed that
the ant “highways” often seen in nature (and in people’s
kitchens) result from individual ants exuding pheromone, a
chemical substance, that attracts other ants. Deneubourg, a pi-
oneer in the field, also demonstrated that this process of laying
a trail of pheromone that others can follow was a good strategy
for finding the shortest path between a nest and a food source.

In experiments with the Argentine ant Linepithema humile,
Deneubourg constructed a bridge with two branches, one
twice as long as the other, that separated a nest from a food
source. Within just a few minutes the colony usually selected
the shorter branch. Deneubourg found that the ants lay and
follow trails as they forage. Individual ants expel pheromone,
which attracts other ants. The first ants returning to the nest
from the food source are those that have taken the shorter
path in both directions, from the nest to the food and back.
Because this route is the first to be doubly marked with
pheromone, nestmates are attracted to it.

If, however, the shorter branch is presented to the colony af-
ter the longer branch, the ants will not take it because the
longer branch has already been marked with pheromone. But
computer scientists can overcome this problem in an artificial
system by introducing pheromone decay: when the chemical
evaporates quickly, longer paths will have trouble maintain-
ing stable pheromone trails. The software ants can then select
a shorter branch even if it is discovered belatedly. This proper-
ty is highly desirable to prevent the system from converging
on mediocre solutions. (In L. humile, the pheromone concen-
trations do decay but at a very slow rate.)

In a computer simulation of pheromone evaporation [see il-
lustration on page 00], researchers presented identical food
sources to an artificial colony at different distances from the
nest. At first the virtual ants explored their environment ran-
domly. Then they established trails that connected all of the
food sources to the nest. Next they maintained only the trails
of the sources closest to the nest, leading to the exploitation of
those supplies. With the depletion of that food, the software
ants began to raid the farther sources.

Extending this ant model, Marco Dorigo, a computer scien-
tist at the Université Libre de Bruxelles, and his colleagues
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DIFFERENT FOOD SOURCES are
raided sequentially because of
pheromone evaporation. In this
computer simulation,three iden-
tical sources of food are located
at unequal distances from a nest
(a). After foraging randomly (b),
the ants begin to raid the food
that is closest (c). As those sup-
plies dwindle (d), the concentra-
tion of pheromone along their
trails decreases through evapo-
ration. The ants will then exploit
the farther source.

NETWORK TRAFFIC can be
rerouted on-the-fly with soft-
ware agents that mimic ants.A
transmission that needs to
travel from A to B must go
through a number of interme-
diate nodes. If the shortest
path (red) between the two lo-
cations is congested, the sys-
tem must redirect the trans-
mission through an alternative
(blue). Software agents can
perform this rerouting auto-
matically in a manner that is
similar to how ants raid differ-
ent food sources (illustration
above). In the analogy, a con-
gested path is like a depleted
food source.

N
A

M
ET

K 
A

ge
nc

yt
k

N
A

M
ET

K 
A

ge
nc

yt
k

PHEROMONE TRAILS enable
ants to forage efficiently. Two
ants leave the nest at the
same time (top), each taking a
different path and marking it
with pheromone.The ant that
took the shorter path returns
first (bottom). Because this
trail is now doubly marked
with pheromone, it will attract
other ants more than the
longer route will.
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In the traveling salesman problem, a
person must find the shortest route by

which to visit a given number of cities,
each exactly once.The classic problem is
devilishly difficult: for just 15 cities [see il-
lustration at right] there are billions of
route possibilities.

Recently researchers have begun to ex-
periment with antlike agents to derive a
solution.The approach relies on the artifi-
cial ants laying and following the equiva-
lent of pheromone trails [see illustrations
on opposite page].

Envision a colony of such ants, each in-
dependently hopping from city to city, fa-
voring nearby locations but otherwise
traveling randomly.After completing a
tour of all the cities, an ant goes back to
the links it used and deposits pheromone.
The amount of the chemical is inversely
proportional to the overall length of the
tour: the shorter the distance, the more
pheromone each of the links receives.
Thus, after all the ants have completed
their tours and spread their pheromone,
the links that belonged to the highest
number of short tours will be richest with
the chemical.Because the pheromone
evaporates, links in long routes will even-
tually contain significantly less of the sub-
stance than those in short tours.

The colony of artificial ants is then re-
leased to travel over the cities again, but
this time they are guided by the earlier
pheromone trails (high-concentration
links are favored) as well as by the interci-
ty distances (nearby locations have priori-
ty), which the ants can obtain by consult-
ing a table storing those numbers. In gen-
eral, the two criteria—pheromone
strength and intercity distance—are
roughly weighted equally.

Marco Dorigo of the Free University of
Brussels and his colleagues have imple-
mented this ant-based system in software.
Of course,the methodology assumes that
the favored links,when taken together,will
lead to an overall short route.Dorigo has
found that after repeating the process
(tour completion followed by pheromone
reinforcement and evaporation) numer-

ous times,the artificial ants are indeed
able to obtain progressively shorter tours,
such as that shown at the right.

Nevertheless, a difficulty arises when
many routes happen to use a link that, as
it turns out, is not part of a short tour. (In
fact, such a link might belong to many,
many long routes.) Dorigo discovered
that although this popular link might bias
the search for several iterations, a better
connection will eventually replace it.This
optimization is a consequence of the sub-
tle interplay between reinforcement and
evaporation, which ensures that only the
better links survive.Specifically, at some
point an alternative connection that is
part of a short route would be selected by
chance and would become reinforced
more than the popular link, which would
then lose its attractiveness as its
pheromone evaporated.

Another problem occurs when a short
route contains a very long link that initial-
ly is less likely to be used.But Dorigo has
shown that even though the connection
might be a slow starter, once it has been
selected it will quickly become reinforced
more than other, competing links.

It is important to note that this ant-
based method is effective for finding
short routes but not necessarily the short-
est one.Nevertheless, such near-optimal
solutions are often more than adequate,
particularly because obtaining the best
route can require an unwieldy amount of
computation. In fact, determining the ex-
act solution quickly becomes intractable
as the number of cities increases.

In addition,Dorigo’s system has one ad-
vantage: its inherent flexibility.Because
the artificial ants are continuously explor-
ing different paths,the pheromone trails
provide backup plans.So,whenever one of
the links breaks down (bad weather be-
tween Houston and Atlanta, for instance),
a pool of alternatives already exists.



have devised a way to solve the famous “traveling salesman
problem” [see box on page 00]. The problem calls for finding
the shortest route that goes through a given number of cities
exactly once. This test is appealing because it is easy to formu-
late and yet extremely difficult to solve. It is “NP-complete”:
the solution requires a number of computational steps that
grows faster than the number of cities raised to any finite
power (NP stands for nondeterministic polynomial). For such
problems, people usually try to find an answer that is good
enough but not necessarily the best (that is, a route that is suf-
ficiently short but perhaps not the shortest). Dorigo has shown
that he can obtain near-optimal routes by using artificial ants
that are tweaked so that the concentration of pheromone they
deposit varies with the overall distances they have traveled.

Similar approaches have been successful in a number of
other optimization tasks. For instance, artificial ants provide
the best solution to the classic quadratic assignment problem,
in which the manufacture of a number of goods must be as-
signed to different factories so as to minimize the total dis-
tance over which the items need to be transported between fa-
cilities. In a related application, Dave Gregg of Unilever in the
U.K. and Vince Darley of Bios Group in Santa Fe, N.M., re-
port that they have developed an ant-based method for de-
creasing the time it takes to perform a given amount of work
in a large Unilever plant. The system must efficiently schedule
various storage tanks, chemical mixers, packaging assembly
lines and other equipment.

Dynamic Ants

In addition to solving optimization problems that are basi-
cally static, or nonvarying, antlike agents can also cope

with glitches and dynamic environments—for example, a fac-
tory where a machine breaks down. By maintaining pher-
omone trails and continuously exploring new paths, the ants
serendipitously set up a backup plan and thus are prepared to
respond to changes in their environment. This property,
which may explain the ecological success of real ants, is cru-
cial for many applications.

Consider the dynamic unpredictability of a telephone net-
work. A phone call from A to B generally has to go through a
number of intermediate nodes, or switching stations, requir-
ing a mechanism to tell the call where it should hop next to
establish the A-to-B connection. Obviously the algorithm for
this process should avoid congested areas to minimize delays,
and backup routes become especially valuable when condi-
tions change dramatically. Bad weather at an airport or a
phone-in competition on TV will lead to transient local surges
of network traffic, requiring on-the-fly rerouting of calls
through less busy parts of the system.

To handle such conditions, Ruud Schoonderwoerd and
Janet Bruten of Hewlett-Packard’s research laboratories in
Bristol, U.K., and Owen Holland of the University of the West
of England have invented a routing technique in which antlike
agents deposit bits of information, or “virtual pheromone,” at
the network nodes to reinforce paths through uncongested ar-
eas. Meanwhile an evaporation mechanism adjusts the node
information to disfavor paths that go through busy areas.

Specifically, each node keeps a routing table that tells phone
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In some ant species, nestmates are recruited to help when a
single ant cannot retrieve a large prey.Then, during an initial

period that can last up to several minutes, the ants change their
positions and alignments around the object until  they are able
to move the prey toward their nest.

Using mechanical robots, Ron Kube and Hong Zhang of the
University of Alberta have reproduced this behavior.The task for
their robotic army was to push a box toward a goal, and each in-
dividual was programmed with very simple instructions: find

C o o p e r a t i v e  Tr a n s p o r t  
i n  A n t s  a n d  R o b o t s

ANTS WORK TOGETHER to transport a large leaf (left). Such team-
work has inspired scientists to program robots without the use of
complex software. In an experiment at the University of Alberta (be-
low), the robots must push an illuminated circular box toward a light.
Even though each robot (right) does not communicate with the oth-
ers and acts independently by following a small set of simple instruc-
tions, together the group is able to accomplish its goal.
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calls where to go next depending on their destinations.
Antlike agents continually adjust the table entries, or scores,
to reflect the current network conditions. If an agent experi-
ences a long delay because it went through a highly congested
portion of the network, it will add just a tiny amount of
“pheromone” to the table entries that would send calls to that
overloaded area. In mathematical terms, the scores for the
corresponding nodes would be increased just slightly. On the
other hand, if the agent went quickly from one node to anoth-
er, it would reinforce the use of that path by leaving a lot of
“pheromone”—that is, by increasing the appropriate scores
substantially. The calculations are such that even though a
busy path may by definition have many agents traveling on it,
their cumulative “pheromone” will be less than that of an un-
congested path with fewer agents.

The system removes obsolete solutions by applying a math-
ematical form of evaporation: all of the table entries are de-
creased regularly by a small amount. This process and the
way in which the antlike agents increase the scores are de-
signed to work in tandem so that busy routes experience more
evaporation than reinforcement, whereas uncongested routes
undergo just the opposite.

Any balance between evaporation and reinforcement can
be disrupted easily. When a previously good route becomes
congested, agents that follow it are delayed, and evaporation
overcomes reinforcement. Soon the route is abandoned, and
the agents discover (or rediscover) alternatives and exploit
them. The benefits are twofold: when phone calls are rerouted
through the better parts of a network, the process not only al-
lows the calls to get through expeditiously but also enables
the congested areas to recover from the overload.

Several companies are exploring this approach for handling

the traffic on their networks. France Télécom and British Tele-
com have taken an early lead in applying ant-based routing
methods to their systems. In the U.S., MCI-Worldcom has
been investigating artificial ants not only for managing the
company’s telephone network but also for other tasks such as
customer billing. The ultimate application, though, may be on
the Internet, where traffic is particularly unpredictable.

To handle the demanding conditions of the Net, Dorigo
and his colleague Gianni Di Caro of the Université Libre de
Bruxelles have increased the sophistication of the ant agents
by taking into account several other factors, including the
overall time it takes information to get from its origin to its
destination. (The approach for phone networks considers just
the time it takes to go from one node to another, and the traf-
fic in the reverse direction is assumed to be the same.) Simula-
tion results indicate that Dorigo and Di Caro’s system outper-
forms all other routing methods in terms of both maximizing
throughput and minimizing delays. In fact, extensive tests sug-
gest that the ant-based method is superior to Open Shortest
Path First, the protocol that the Internet currently uses, in
which nodes must continually inform one another of the sta-
tus of the links to which they are connected.

A Swarm of Applications

Other behaviors of social insects have inspired a variety of
research efforts. Computer scientists are studying insect

swarms to devise different techniques for controlling a group of
robots. One application being investigated is cooperative trans-
port [see box on page 00]. Using such approaches, engineers
could design relatively simple and cheap robots that would
work together to perform increasingly sophisticated tasks. In
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the box, make contact with it, position your-
self so that the box is between you and the
goal, then push the box toward the goal.

Although the robots were intentionally pro-
grammed very crudely, the similarity between
their behavior and that of a swarm of ants is
striking. (The videotaped experiments can be
viewed at http://www.cs.ualberta.ca/~kube/
on the World Wide Web.) At first, the robots
move randomly, trying to find the box.After
locating it they begin pushing, but if they are
unsuccessful in moving it they change their
positions and alignments.Even temporary
setbacks are evident, as when the box is

moved in a direction away from the goal.The
robots make continual adjustments when
they lose contact with the box, when they
block one another or when the box rotates.
Eventually the robots, despite their limited ca-
pabilities, are successful in delivering the box
to the goal.

Obviously, individuals trying to push an ob-
ject can find far more efficient ways to work
together.But because of the extreme simplici-
ty of this ant-based approach—for one thing,
the robots do not need to communicate with
one another—it is promising for miniaturiza-
tion and low-cost applications.
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In some ant species, such as Messor
sancta, workers pile up their colony’s

dead to clean their nests.The illustration
at the right shows the dynamics of such
cemetery organization. If the corpses are
randomly distributed at the beginning
of the experiment, the workers will form
clusters within a few hours.

Jean-Louis Deneubourg of the Free
University of Brussels and his colleagues
have proposed a simple explanation:
small groups of items grow by attracting
workers to deposit more items, and this
positive feedback leads to the formation
of larger and larger bunches.Scientists,
however, still do not know the exact de-
tails of the individual behavior that im-
plements the feedback mechanism.

Another phenomenon can be ex-
plained in a similar way.The workers of
the ant Leptothorax unifasciatus sort the
colony’s brood systematically.Eggs and
microlarvae are placed at the center of an
area, the largest larvae at the periphery,
and pupae and prepupae in between.
One explanation of this behavior is that
ants pick up and drop items according
to the number of similar surrounding ob-
jects.For example, if an ant finds a large
larva surrounded by eggs, it will most
likely pick up the larval “misfit.”And that
ant will probably deposit its load in a re-
gion containing other large larvae.

By studying such brood sorting, Erik
Lumer of University College London and
Baldo Faieta of Interval Research in Palo
Alto, Calif., have developed a method for
exploring a large database. Imagine that
a bank wants to determine which of its
customers ismost likely to repay a loan.
The problem is that many of the cus-
tomers have never borrowed money
from any financial institution.

But the bank has a large database
of customer profiles with attributes
such as age, gender, marital status, res-
idential status, banking services used
by the customer and so on. If the bank
had a way to visualize clusters of peo-
ple with similar characteristics, loan
officers might be able to predict more

accurately whether a particular person
would repay a loan. If, for example, a
mortgage applicant belonged to a
group dominated by defaulters, that
person might not be a good credit risk.

Because clusters are generally visual-
ized best in two dimensions (higher di-
mensions make the data difficult for hu-
mans to interpret), Lumer and Faieta
represent each customer as a point in a
plane.So, each client is like a brood item,
and software ants can move the clients
around, picking them up and depositing
them according to the surrounding
items.The distance between two cus-
tomers indicates how similar they are.
For the single attribute of age, for in-
stance, shorter distances depict smaller
age differences.The artificial ants make
their sorting decisions by considering all
the different customer characteristics si-
multaneously.And depending on the
bank’s objectives, the software could
mathematically weigh some of the at-
tributes more heavily than others.

Through this kind of analysis,one clus-
ter might contain people who are about
20 years old,single,mostly living with their
parents and whose most popular bank-
ing service is interest checking.Another
grouping may consist of people who are
about 57, female, married (or widowed)
and owners of a house with no mortgage.

Of course, banks and insurance com-
panies have typically used similar types
of cluster analyses.But the ant-based ap-
proach enables the data to be visualized
easily, and it boasts one intriguing fea-
ture.The number of clusters emerges
automatically from the data, whereas
conventional methods usually assume a
predefined number of groups into
which the data are then fit.Thus, antlike

F r o m  C e m e t e r i e s  t o  D a t a b a s e s

WORKER ANTS cluster their dead to
clean their nest. At the outset of this
experiment,1,500 corpses are located
randomly (top). After 26 hours, the
workers have formed three piles (bot-
tom). This behavior and the way in
which ants sort their larvae has led to
a new type of computer program for
analyzing banking data.
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another project, a model that was initially introduced to explain
how ants cluster their dead and sort their larvae has become
the basis of a new approach for analyzing financial data [see
box on page 00]. And research investigating the flexible way
in which honeybees assign tasks could lead to a more efficient
method for scheduling jobs in a factory [see box on page 00].

Additional examples abound. Applying knowledge of how
wasps construct their nests, Dan Petrovich of the Air Force In-
stitute of Technology in Dayton, Ohio, has designed a swarm
of tiny mobile satellites that would assemble themselves into a
larger, predefined structure. H. Van Dyke Parunak of the En-
vironmental Research Institute of Michigan in Ann Arbor is
deploying a variety of insectlike software agents to solve man-
ufacturing problems—for example, scheduling a complex net-
work of suppliers to a factory. Paul Kantor of Rutgers Univer-
sity has developed a swarm-intelligence approach for finding
information over the World Wide Web and in other large net-
works. Web surfers looking for interesting sites can, if they be-
long to a “colony” of users, access information in the form of
digital pheromones (essentially, ratings) left by fellow mem-
bers in previous searches.

Indeed, the potential of swarm intelligence is enormous. It
offers an alternative way of designing systems that have tradi-
tionally required centralized control and extensive prepro-
gramming. It instead boasts autonomy and self-sufficiency, re-
lying on direct or indirect interactions among simple individu-
al agents. Such operations could lead to systems that can
adapt quickly to rapidly fluctuating conditions.

But the field is in its infancy. Because researchers lack a de-
tailed understanding of the inner workings of insect swarms,
identifying the rules by which individuals in those swarms in-
teract has been a huge challenge, and without such informa-
tion computer scientists have had trouble developing the ap-
propriate software. In addition, although swarm-intelligence
approaches have been effective at performing a number of op-
timization and control tasks, the systems developed have been
inherently reactive and lack the necessary overview to solve
problems that require in-depth reasoning techniques. Further-
more, one criticism of the field is that the use of autonomous
insectlike agents will lead to unpredictable behavior in the
computers they inhabit. This characteristic may actually turn
out to be a strength, though, in that it could allow such sys-
tems to adapt to solve new, unforeseen problems—a flexibility
that traditional software typically lacks. 

Many futurists predict that chips will soon be embedded
into thousands of mundane objects, from envelopes to trash
cans to heads of lettuce. Enabling all these pieces of silicon to
communicate with one another in a meaningful way will re-
quire novel approaches. As high-technology author Kevin
Kelly puts it, “Dumb parts, properly connected into a swarm,
yield smart results.” The trick, of course, is in the proper con-
nection of all the parts.
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In a honeybee colony,indi-
vidual insects specialize at

certain tasks,depending on
their age.Older bees,for ex-
ample,tend to be the for-
agers for the hive.But the al-
location of tasks is not rigid:
when food is scarce,younger
nurse bees will forage,too.

Using such a biological
system as a model, we have
worked with Mike Campos
of Northwestern University
to devise a technique for
scheduling paint booths in
a truck factory. In the facility the
booths must paint trucks com-
ing out of an assembly line, and
each booth is like an artificial bee
specializing in one color.The
booths can change their colors if
needed, but doing so is time-
consuming and costly (the
equipment must be cleaned, and paint is wasted).

Because scientists have yet to understand exactly how hon-
eybees regulate their division of labor, we made the following
assumption: an individual performs the tasks for which it is spe-
cialized unless it perceives an important need to perform an-
other function.Thus, a booth with red paint will continue to
handle orders of that color unless an urgent job requires a
white truck and the other booths, particularly those specializ-
ing in white, have much longer queues.

Although this basic rule sounds simplistic, in practice it is very
effective.In fact,a honeybeelike system enables the paint booths
to determine their own schedules with higher efficiency—specif-

HONEYBEES (top) perform
tasks based on the hive’s
needs. By studying the way
in which these jobs are as-
signed,scientists hope to de-
velop better ways to pro-
gram the equipment in an
automated factory (bottom).

P a i n t  
B o o t h s  
w i t h
B e e  B r a i n s
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ically,fewer color changes—than a centralized computer can.And
the method is adept at responding to changes in consumer de-
mand.If the number of trucks that need to be painted blue surges
unexpectedly,other booths can quickly forgo their specialty col-
ors to accommodate the unassigned vehicles.Furthermore,the
system copes easily with glitches.When a paint booth breaks
down,other stations compensate swiftly by immediately divvy-
ing up the additional load,with idle booths receiving the bulk of
the work.

sorting has been effective in discovering
interesting commonalities that might
otherwise remain hidden.


